Name | Description | |
---|---|---|
![]() |
init_mean | Mean of the normal distribution used to initialize the latent factors |
![]() |
init_stdev | Standard deviation of the normal distribution used to initialize the latent factors |
![]() |
item_factors | Latent item factor matrix |
![]() |
num_factors | Number of latent factors per user/item |
![]() |
user_factors | Latent user factor matrix |
Name | Description | |
---|---|---|
![]() ![]() |
ComputeFit | Computes the fit (optimization criterion) on the training data |
![]() ![]() |
Iterate | Iterate once over the data |
![]() ![]() |
LoadModel | There is no summary. |
![]() ![]() |
Predict | Predict the weight for a given user-item combination. |
![]() ![]() |
SaveModel | There is no summary. |
![]() ![]() |
Train | There is no summary. |
Name | Description | |
---|---|---|
![]() |
InitMean | Mean of the normal distribution used to initialize the latent factors |
![]() |
InitStdev | Standard deviation of the normal distribution used to initialize the latent factors |
![]() |
NumFactors | Number of latent factors per user/item |
![]() |
NumIter | Number of iterations over the training data |