MyMediaLite Rating Prediction 3.11 usage: rating_prediction --training-file=FILE --recommender=METHOD [OPTIONS] recommenders (plus options and their defaults): - BiPolarSlopeOne - FactorWiseMatrixFactorization num_factors=10 shrinkage=25 sensibility=1E-05 num_iter=10 reg_u=15 reg_i=10 supports --find-iter=N - GlobalAverage supports --online-evaluation - ItemAttributeKNN k=80 correlation=BinaryCosine weighted_binary=False alpha=0; baseline predictor: reg_u=15 reg_i=10 num_iter=10 needs --item-attributes=FILE supports --online-evaluation - ItemAverage supports --online-evaluation - ItemKNN k=80 correlation=BinaryCosine weighted_binary=False alpha=0; baseline predictor: reg_u=15 reg_i=10 num_iter=10 supports --online-evaluation - MatrixFactorization num_factors=10 regularization=0.015 learn_rate=0.01 learn_rate_decay=1 num_iter=30 supports --find-iter=N, --online-evaluation - SlopeOne - UserAttributeKNN k=80 correlation=BinaryCosine weighted_binary=False alpha=0; baseline predictor: reg_u=15 reg_i=10 num_iter=10 needs --user-attributes=FILE supports --online-evaluation - UserAverage supports --online-evaluation - UserItemBaseline reg_u=15 reg_i=10 num_iter=10 supports --find-iter=N, --online-evaluation - UserKNN k=80 correlation=BinaryCosine weighted_binary=False alpha=0; baseline predictor: reg_u=15 reg_i=10 num_iter=10 supports --online-evaluation - TimeAwareBaseline num_iter=30 bin_size=70 beta=0.4 user_bias_learn_rate=0.003 item_bias_learn_rate=0.002 alpha_learn_rate=1E-05 item_bias_by_time_bin_learn_rate=5E-06 user_bias_by_day_learn_rate=0.0025 user_scaling_learn_rate=0.008 user_scaling_by_day_learn_rate=0.002 reg_u=0.03 reg_i=0.03 reg_alpha=50 reg_item_bias_by_time_bin=0.1 reg_user_bias_by_day=0.005 reg_user_scaling=0.01 reg_user_scaling_by_day=0.005 supports --find-iter=N - TimeAwareBaselineWithFrequencies num_iter=40 bin_size=70 beta=0.4 user_bias_learn_rate=0.00267 item_bias_learn_rate=0.000488 alpha_learn_rate=3.11E-06 item_bias_by_time_bin_learn_rate=0.000115 user_bias_by_day_learn_rate=0.000257 user_scaling_learn_rate=0.00564 user_scaling_by_day_learn_rate=0.00103 reg_u=0.0255 reg_i=0.0255 reg_alpha=3.95 reg_item_bias_by_time_bin=0.0929 reg_user_bias_by_day=0.00231 reg_user_scaling=0.0476 reg_user_scaling_by_day=0.019 frequency_log_base=6.76 item_bias_at_frequency_learn_rate=0.00236 reg_item_bias_at_frequency=1.1E-08 supports --find-iter=N - CoClustering num_user_clusters=3 num_item_clusters=3 num_iter=30 supports --find-iter=N - Random supports --online-evaluation - Constant constant_rating=1 supports --online-evaluation - LatentFeatureLogLinearModel num_factors=10 bias_reg=0.01 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.01 bias_learn_rate=1 num_iter=30 loss=RMSE supports --find-iter=N - BiasedMatrixFactorization num_factors=10 bias_reg=0.01 reg_u=0.015 reg_i=0.015 frequency_regularization=False learn_rate=0.01 bias_learn_rate=1 learn_rate_decay=1 num_iter=30 bold_driver=False loss=RMSE max_threads=1 naive_parallelization=False supports --find-iter=N, --online-evaluation - SVDPlusPlus num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=30 supports --find-iter=N, --online-evaluation - SigmoidSVDPlusPlus num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=30 loss=RMSE supports --find-iter=N, --online-evaluation - SocialMF num_factors=10 reg_u=0.015 reg_i=0.015 bias_reg=0.01 social_regularization=1 learn_rate=0.01 bias_learn_rate=1 num_iter=30 bold_driver=False loss=RMSE needs --user-relations=FILE supports --find-iter=N, --online-evaluation - SigmoidItemAsymmetricFactorModel num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=1 loss=30 supports --find-iter=N, --online-evaluation - SigmoidUserAsymmetricFactorModel num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=30 loss=RMSE supports --find-iter=N, --online-evaluation - SigmoidCombinedAsymmetricFactorModel num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=30 loss=RMSE supports --find-iter=N, --online-evaluation - NaiveBayes class_smoothing=1 attribute_smoothing=1 needs --item-attributes=FILE supports --online-evaluation - ExternalRatingPredictor prediction_file=FILENAME - GSVDPlusPlus num_factors=10 regularization=0.015 bias_reg=0.33 frequency_regularization=False learn_rate=0.001 bias_learn_rate=0.7 learn_rate_decay=1 num_iter=30 needs --item-attributes=FILE supports --find-iter=N, --online-evaluation method ARGUMENTS have the form name=value general OPTIONS: --recommender=METHOD set recommender method (default BiasedMatrixFactorization) --recommender-options=OPTIONS use OPTIONS as recommender options --help display this usage information and exit --version display version information and exit --random-seed=N initialize random number generator with N --rating-type=float|byte store ratings internally as floats (default) or bytes --no-id-mapping do not map user and item IDs to internal IDs, keep original IDs files: --training-file=FILE read training data from FILE --test-file=FILE read test data from FILE --test-no-ratings test data contains no rating column (needs both --prediction-file=FILE and --test-file=FILE) --file-format=movielens_1m|kddcup_2011|ignore_first_line|default --data-dir=DIR load all files from DIR --user-attributes=FILE file with user attribute information, 1 tuple per line --item-attributes=FILE file with item attribute information, 1 tuple per line --user-relations=FILE file with user relation information, 1 tuple per line --item-relations=FILE file with item relation information, 1 tuple per line --save-model=FILE save computed model to FILE --load-model=FILE load model from FILE --save-user-mapping=FILE save user ID mapping to FILE --save-item-mapping=FILE save item ID mapping to FILE --load-user-mapping=FILE load user ID mapping from FILE --load-item-mapping=FILE load item ID mapping from FILE prediction options: --prediction-file=FILE write the rating predictions to FILE --prediction-line=FORMAT format of the prediction line; {0}, {1}, {2} refer to user ID, item ID, and predicted rating; default is {0}\t{1}\t{2}; --prediction-header=LINE print LINE to the first line of the prediction file evaluation options: --cross-validation=K perform k-fold cross-validation on the training data --test-ratio=NUM use a ratio of NUM of the training data for evaluation (simple split) --chronological-split=NUM|DATETIME use the last ratio of NUM of the training data ratings for evaluation, or use the ratings from DATETIME on for evaluation (requires time information in the training data) --online-evaluation perform online evaluation (use every tested rating for incremental training) --search-hp search for good hyperparameter values (experimental feature) --compute-fit display fit on training data --measures=LIST comma- or space-separated list of evaluation measures to display (default is RMSE, MAE, CBD) use --help-measures to get a list of all available measures options for finding the right number of iterations (iterative methods) --find-iter=N give out statistics every N iterations --num-iter=N start measuring at N iterations --max-iter=N perform at most N iterations --epsilon=NUM abort iterations if main evaluation measure is more than best result plus NUM --cutoff=NUM abort if main evaluation measure is above NUM